289 research outputs found

    Polynomial-Time, Semantically-Secure Encryption Achieving the Secrecy Capacity

    Get PDF
    In the wiretap channel setting, one aims to get information-theoretic privacy of communicated data based only on the assumption that the channel from sender to receiver is noisier than the one from sender to adversary. The secrecy capacity is the optimal (highest possible) rate of a secure scheme, and the existence of schemes achieving it has been shown. For thirty years the ultimate and unreached goal has been to achieve this optimal rate with a scheme that is polynomial-time. (This means both encryption and decryption are proven polynomial time algorithms.) This paper finally delivers such a scheme. In fact it does more. Our scheme not only meets the classical notion of security from the wiretap literature, called MIS-R (mutual information security for random messages) but achieves the strictly stronger notion of semantic security, thus delivering more in terms of security without loss of rate

    New Proofs for NMAC and HMAC: Security Without Collision-Resistance

    Get PDF
    HMAC was proved by Bellare, Canetti and Krawczyk [2] to be a PRF assuming that (1) the underlying compression function is a PRF, and (2) the iterated hash function is weakly collision-resistant. However, recent attacks show that assumption (2) is false for MD5 and SHA-1, removing the proof-based support for HMAC in these cases. This paper proves that HMAC is a PRF under the sole assumption that the compression function is a PRF. This recovers a proof based guarantee since no known attacks compromise the pseudorandomness of the compression function, and it also helps explain the resistance-to-attack that HMAC has shown even when implemented with hash functions whose (weak) collision resistance is compromised. We also show that an even weaker-than-PRF condition on the compression function, namely that it is a privacy-preserving MAC, suffices to establish HMAC is a MAC as long as the hash function meets the very weak requirement of being computationally almost universal, where again the value lies in the fact that known attacks do not invalidate the assumptions made

    Code-Based Game-Playing Proofs and the Security of Triple Encryption

    Get PDF
    The game-playing technique is a powerful tool for analyzing cryptographic constructions. We illustrate this by using games as the central tool for proving security of three-key triple-encryption, a long-standing open problem. Our result, which is in the ideal-cipher model, demonstrates that for DES parameters (56-bit keys and 64-bit plaintexts) an adversary\u27s maximal advantage is small until it asks about 2782^{78} queries. Beyond this application, we develop the foundations for game playing, formalizing a general framework for game-playing proofs and discussing techniques used within such proofs. To further exercise the game-playing framework we show how to use games to get simple proofs for the PRP/PRF Switching Lemma, the security of the basic CBC~MAC, and the chosen-plaintext-attack security of OAEP

    A Characterization of Chameleon Hash Functions and New, Efficient Designs

    Get PDF
    This paper shows that chameleon hash functions and Sigma protocols are equivalent. We provide a transform of any suitable Sigma protocol to a chameleon hash function, and also show that any chameleon hash function is the result of applying our transform to some suitable Sigma protocol. This enables us to unify previous designs of chameleon hash functions, seeing them all as emanating from a common paradigm, and also obtain new designs that are more efficient than previous ones. In particular, via a modified version of the Fiat-Shamir protocol, we obtain the fastest known chameleon hash function with a proof of security based on the STANDARD factoring assumption. The increasing number of applications of chameleon hash functions, including on-line/off-line signing, chameleon signatures, designated-verifier signatures and conversion from weakly-secure to fully-secure signatures, make our work of contemporary interest

    Symmetric and Dual PRFs from Standard Assumptions: A Generic Validation of an HMAC Assumption

    Get PDF
    The security of HMAC is proven under the assumption that its compression function is a dual PRF, meaning a PRF when keyed by either of its two inputs. But, not only do we not know whether particular compression functions really are dual PRFs, we do not know if dual PRFs even exist. What if the goal is impossible? This paper addresses this with a foundational treatment of dual PRFs, giving constructions based on standard assumptions. This provides what we call a generic validation of the dual PRF assumption for HMAC. Our approach is to introduce and construct symmetric PRFs, which imply dual PRFs and may be of independent interest. We give a general construction of a symmetric PRF based on a function having a weak form of collision resistance coupled with a leakage hardcore function, a strengthening of the usual notion of hardcore functions we introduce. We instantiate this general construction in two ways to obtain a symmetric and dual PRF assuming (1) Any collision-resistant hash function, or (2) Any one-way permutation. A construction based on any one-way function evades us and is left as an intriguing open problem

    The Security of Practical Two-Party RSA Signature Schemes

    Get PDF
    In a two-party RSA signature scheme, a client and server, each holding a share of an RSA decryption exponent dd, collaborate to compute an RSA signature under the corresponding public key N,eN,e known to both. This primitive is of growing interest in the domain of server-aided password-based security, where the client\u27s share of dd is based on its password. To minimize cost, designers are looking at very simple, practical protocols based on the early ideas of Boyd, but their security is unclear. We analyze a class of these protocols. We suggest two notions of security for two-party signature schemes and provide proofs of security for the schemes in our class based on assumptions about RSA and the hash function underlying the scheme

    Pseudorandom Functions and Permutations Provably Secure Against Related-Key Attacks

    Get PDF
    This paper fills an important foundational gap with the first proofs, under standard assumptions and in the standard model, of the existence of pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) resisting rich and relevant forms of related-key attacks (RKA). An RKA allows the adversary to query the function not only under the target key but under other keys derived from it in adversary-specified ways. Based on the Naor-Reingold PRF we obtain an RKA-PRF whose keyspace is a group and that is proven, under DDH, to resist attacks in which the key may be operated on by arbitrary adversary-specified group elements. Previous work was able only to provide schemes in idealized models (ideal cipher, random oracle), under new, non-standard assumptions, or for limited classes of attacks. The reason was technical difficulties that we resolve via a new approach and framework that, in addition to the above, yields other RKA-PRFs including a DLIN-based one derived from the Lewko-Waters PRF. Over the last 15 years cryptanalysts and blockcipher designers have routinely and consistently targeted RKA-security; it is visibly important for abuse-resistant cryptography; and it helps protect against fault-injection sidechannel attacks. Yet ours are the first significant proofs of existence of secure constructs. We warn that our constructs are proofs-of-concept in the foundational style and not practical

    Partial Signatures and their Applications

    Get PDF
    We introduce Partial Signatures, where a signer, given a message, can compute a ``stub\u27\u27 which preserves her anonymity, yet later she, but nobody else, can complete the stub to a full and verifiable signature under her public key. We provide a formal definition requiring three properties, namely anonymity, unambiguity and unforgeability. We provide schemes meeting our definition both with and without random oracles. Our schemes are surprisingly cheap in both bandwidth and computation. We describe applications including anonymous bidding and betting

    Encryption Schemes Secure under Selective Opening Attack

    Get PDF
    We provide the first public key encryption schemes proven secure against selective opening attack (SOA). This means that if an adversary obtains a number of ciphertexts and then corrupts some fraction of the senders, obtaining not only the corresponding messages but also the coins under which they were encrypted then the security of the other messages is guaranteed. Whether or not schemes with this property exist has been open for many years. Our schemes are based on a primitive we call lossy encryption. Our schemes have short keys (public and secret keys of a fixed length suffice for encrypting an arbitrary number of messages), are stateless, are non-interactive, and security does not rely on erasures. The schemes are without random oracles, proven secure under standard assumptions (DDH, Paillier’s DCR, QR, lattices), and even efficient. We are able to meet both an indistinguishability (IND-SOA-C) and a simulation-style, semantic security (SS-SOA-C) definition
    • …
    corecore